3.181 \(\int \frac{\text{csch}^4(c+d x)}{a+b \sinh ^3(c+d x)} \, dx\)

Optimal. Leaf size=317 \[ -\frac{2 b^{4/3} \tanh ^{-1}\left (\frac{\sqrt [3]{b}-\sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^{2/3}+b^{2/3}}}\right )}{3 a^2 d \sqrt{a^{2/3}+b^{2/3}}}-\frac{2 b^{4/3} \tan ^{-1}\left (\frac{(-1)^{5/6} \left (\sqrt [6]{-1} \sqrt [3]{b}+i \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )\right )}{\sqrt{-(-1)^{2/3} a^{2/3}-b^{2/3}}}\right )}{3 a^2 d \sqrt{-(-1)^{2/3} a^{2/3}-b^{2/3}}}-\frac{2 b^{4/3} \tan ^{-1}\left (\frac{\sqrt [6]{-1} \left ((-1)^{5/6} \sqrt [3]{b}+i \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )\right )}{\sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}}}\right )}{3 a^2 d \sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}}}+\frac{b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}-\frac{\coth ^3(c+d x)}{3 a d}+\frac{\coth (c+d x)}{a d} \]

[Out]

(-2*b^(4/3)*ArcTan[((-1)^(5/6)*((-1)^(1/6)*b^(1/3) + I*a^(1/3)*Tanh[(c + d*x)/2]))/Sqrt[-((-1)^(2/3)*a^(2/3))
- b^(2/3)]])/(3*a^2*Sqrt[-((-1)^(2/3)*a^(2/3)) - b^(2/3)]*d) - (2*b^(4/3)*ArcTan[((-1)^(1/6)*((-1)^(5/6)*b^(1/
3) + I*a^(1/3)*Tanh[(c + d*x)/2]))/Sqrt[(-1)^(1/3)*a^(2/3) - b^(2/3)]])/(3*a^2*Sqrt[(-1)^(1/3)*a^(2/3) - b^(2/
3)]*d) + (b*ArcTanh[Cosh[c + d*x]])/(a^2*d) - (2*b^(4/3)*ArcTanh[(b^(1/3) - a^(1/3)*Tanh[(c + d*x)/2])/Sqrt[a^
(2/3) + b^(2/3)]])/(3*a^2*Sqrt[a^(2/3) + b^(2/3)]*d) + Coth[c + d*x]/(a*d) - Coth[c + d*x]^3/(3*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.432501, antiderivative size = 317, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 7, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.304, Rules used = {3220, 3770, 3767, 2660, 618, 206, 204} \[ -\frac{2 b^{4/3} \tanh ^{-1}\left (\frac{\sqrt [3]{b}-\sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^{2/3}+b^{2/3}}}\right )}{3 a^2 d \sqrt{a^{2/3}+b^{2/3}}}-\frac{2 b^{4/3} \tan ^{-1}\left (\frac{(-1)^{5/6} \left (\sqrt [6]{-1} \sqrt [3]{b}+i \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )\right )}{\sqrt{-(-1)^{2/3} a^{2/3}-b^{2/3}}}\right )}{3 a^2 d \sqrt{-(-1)^{2/3} a^{2/3}-b^{2/3}}}-\frac{2 b^{4/3} \tan ^{-1}\left (\frac{\sqrt [6]{-1} \left ((-1)^{5/6} \sqrt [3]{b}+i \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )\right )}{\sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}}}\right )}{3 a^2 d \sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}}}+\frac{b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}-\frac{\coth ^3(c+d x)}{3 a d}+\frac{\coth (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Csch[c + d*x]^4/(a + b*Sinh[c + d*x]^3),x]

[Out]

(-2*b^(4/3)*ArcTan[((-1)^(5/6)*((-1)^(1/6)*b^(1/3) + I*a^(1/3)*Tanh[(c + d*x)/2]))/Sqrt[-((-1)^(2/3)*a^(2/3))
- b^(2/3)]])/(3*a^2*Sqrt[-((-1)^(2/3)*a^(2/3)) - b^(2/3)]*d) - (2*b^(4/3)*ArcTan[((-1)^(1/6)*((-1)^(5/6)*b^(1/
3) + I*a^(1/3)*Tanh[(c + d*x)/2]))/Sqrt[(-1)^(1/3)*a^(2/3) - b^(2/3)]])/(3*a^2*Sqrt[(-1)^(1/3)*a^(2/3) - b^(2/
3)]*d) + (b*ArcTanh[Cosh[c + d*x]])/(a^2*d) - (2*b^(4/3)*ArcTanh[(b^(1/3) - a^(1/3)*Tanh[(c + d*x)/2])/Sqrt[a^
(2/3) + b^(2/3)]])/(3*a^2*Sqrt[a^(2/3) + b^(2/3)]*d) + Coth[c + d*x]/(a*d) - Coth[c + d*x]^3/(3*a*d)

Rule 3220

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> Int[ExpandTr
ig[sin[e + f*x]^m*(a + b*sin[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, e, f}, x] && IntegersQ[m, p] && (EqQ[n, 4]
|| GtQ[p, 0] || (EqQ[p, -1] && IntegerQ[n]))

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\text{csch}^4(c+d x)}{a+b \sinh ^3(c+d x)} \, dx &=\int \left (-\frac{b \text{csch}(c+d x)}{a^2}+\frac{\text{csch}^4(c+d x)}{a}-\frac{b^2 \sinh ^2(c+d x)}{a^2 \left (-a-b \sinh ^3(c+d x)\right )}\right ) \, dx\\ &=\frac{\int \text{csch}^4(c+d x) \, dx}{a}-\frac{b \int \text{csch}(c+d x) \, dx}{a^2}-\frac{b^2 \int \frac{\sinh ^2(c+d x)}{-a-b \sinh ^3(c+d x)} \, dx}{a^2}\\ &=\frac{b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}+\frac{b^2 \int \left (-\frac{i}{3 b^{2/3} \left (-i \sqrt [3]{a}-i \sqrt [3]{b} \sinh (c+d x)\right )}-\frac{i}{3 b^{2/3} \left (\sqrt [6]{-1} \sqrt [3]{a}-i \sqrt [3]{b} \sinh (c+d x)\right )}-\frac{i}{3 b^{2/3} \left ((-1)^{5/6} \sqrt [3]{a}-i \sqrt [3]{b} \sinh (c+d x)\right )}\right ) \, dx}{a^2}+\frac{i \operatorname{Subst}\left (\int \left (1+x^2\right ) \, dx,x,-i \coth (c+d x)\right )}{a d}\\ &=\frac{b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}+\frac{\coth (c+d x)}{a d}-\frac{\coth ^3(c+d x)}{3 a d}-\frac{\left (i b^{4/3}\right ) \int \frac{1}{-i \sqrt [3]{a}-i \sqrt [3]{b} \sinh (c+d x)} \, dx}{3 a^2}-\frac{\left (i b^{4/3}\right ) \int \frac{1}{\sqrt [6]{-1} \sqrt [3]{a}-i \sqrt [3]{b} \sinh (c+d x)} \, dx}{3 a^2}-\frac{\left (i b^{4/3}\right ) \int \frac{1}{(-1)^{5/6} \sqrt [3]{a}-i \sqrt [3]{b} \sinh (c+d x)} \, dx}{3 a^2}\\ &=\frac{b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}+\frac{\coth (c+d x)}{a d}-\frac{\coth ^3(c+d x)}{3 a d}-\frac{\left (2 b^{4/3}\right ) \operatorname{Subst}\left (\int \frac{1}{-i \sqrt [3]{a}-2 \sqrt [3]{b} x-i \sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^2 d}-\frac{\left (2 b^{4/3}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [6]{-1} \sqrt [3]{a}-2 \sqrt [3]{b} x+\sqrt [6]{-1} \sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^2 d}-\frac{\left (2 b^{4/3}\right ) \operatorname{Subst}\left (\int \frac{1}{(-1)^{5/6} \sqrt [3]{a}-2 \sqrt [3]{b} x+(-1)^{5/6} \sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^2 d}\\ &=\frac{b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}+\frac{\coth (c+d x)}{a d}-\frac{\coth ^3(c+d x)}{3 a d}+\frac{\left (4 b^{4/3}\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (\sqrt [3]{-1} a^{2/3}-b^{2/3}\right )-x^2} \, dx,x,-2 \sqrt [3]{b}+2 \sqrt [6]{-1} \sqrt [3]{a} \tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^2 d}+\frac{\left (4 b^{4/3}\right ) \operatorname{Subst}\left (\int \frac{1}{4 \left (a^{2/3}+b^{2/3}\right )-x^2} \, dx,x,-2 \sqrt [3]{b}-2 i \sqrt [3]{a} \tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^2 d}+\frac{\left (4 b^{4/3}\right ) \operatorname{Subst}\left (\int \frac{1}{4 \left ((-1)^{2/3} a^{2/3}+b^{2/3}\right )-x^2} \, dx,x,-2 \sqrt [3]{b}+2 (-1)^{5/6} \sqrt [3]{a} \tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^2 d}\\ &=\frac{2 b^{4/3} \tan ^{-1}\left (\frac{\sqrt [3]{b}+\sqrt [3]{-1} \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{-(-1)^{2/3} a^{2/3}-b^{2/3}}}\right )}{3 a^2 \sqrt{-(-1)^{2/3} a^{2/3}-b^{2/3}} d}+\frac{2 b^{4/3} \tan ^{-1}\left (\frac{\sqrt [3]{b}-(-1)^{2/3} \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}}}\right )}{3 a^2 \sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}} d}+\frac{b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}-\frac{2 b^{4/3} \tanh ^{-1}\left (\frac{\sqrt [3]{b}-\sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^{2/3}+b^{2/3}}}\right )}{3 a^2 \sqrt{a^{2/3}+b^{2/3}} d}+\frac{\coth (c+d x)}{a d}-\frac{\coth ^3(c+d x)}{3 a d}\\ \end{align*}

Mathematica [C]  time = 6.06156, size = 370, normalized size = 1.17 \[ \frac{4 b^2 \text{RootSum}\left [8 \text{$\#$1}^3 a+\text{$\#$1}^6 b-3 \text{$\#$1}^4 b+3 \text{$\#$1}^2 b-b\& ,\frac{2 \text{$\#$1}^4 \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )-4 \text{$\#$1}^2 \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )+\text{$\#$1}^4 c-2 \text{$\#$1}^2 c+\text{$\#$1}^4 d x-2 \text{$\#$1}^2 d x+2 \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )+c+d x}{4 \text{$\#$1}^2 a+\text{$\#$1}^5 b-2 \text{$\#$1}^3 b+\text{$\#$1} b}\& \right ]+8 a \tanh \left (\frac{1}{2} (c+d x)\right )+8 a \coth \left (\frac{1}{2} (c+d x)\right )+8 a \sinh ^4\left (\frac{1}{2} (c+d x)\right ) \text{csch}^3(c+d x)-\frac{1}{2} a \sinh (c+d x) \text{csch}^4\left (\frac{1}{2} (c+d x)\right )-24 b \log \left (\tanh \left (\frac{1}{2} (c+d x)\right )\right )}{24 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[c + d*x]^4/(a + b*Sinh[c + d*x]^3),x]

[Out]

(8*a*Coth[(c + d*x)/2] - 24*b*Log[Tanh[(c + d*x)/2]] + 4*b^2*RootSum[-b + 3*b*#1^2 + 8*a*#1^3 - 3*b*#1^4 + b*#
1^6 & , (c + d*x + 2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]
 - 2*c*#1^2 - 2*d*x*#1^2 - 4*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x
)/2]*#1]*#1^2 + c*#1^4 + d*x*#1^4 + 2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh
[(c + d*x)/2]*#1]*#1^4)/(b*#1 + 4*a*#1^2 - 2*b*#1^3 + b*#1^5) & ] + 8*a*Csch[c + d*x]^3*Sinh[(c + d*x)/2]^4 -
(a*Csch[(c + d*x)/2]^4*Sinh[c + d*x])/2 + 8*a*Tanh[(c + d*x)/2])/(24*a^2*d)

________________________________________________________________________________________

Maple [C]  time = 0.087, size = 178, normalized size = 0.6 \begin{align*} -{\frac{1}{24\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}+{\frac{3}{8\,da}\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{1}{24\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}}+{\frac{3}{8\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-{\frac{b}{d{a}^{2}}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{4\,{b}^{2}}{3\,d{a}^{2}}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{6}-3\,a{{\it \_Z}}^{4}-8\,b{{\it \_Z}}^{3}+3\,a{{\it \_Z}}^{2}-a \right ) }{\frac{{{\it \_R}}^{2}}{{{\it \_R}}^{5}a-2\,{{\it \_R}}^{3}a-4\,{{\it \_R}}^{2}b+{\it \_R}\,a}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)^4/(a+b*sinh(d*x+c)^3),x)

[Out]

-1/24/d/a*tanh(1/2*d*x+1/2*c)^3+3/8/d/a*tanh(1/2*d*x+1/2*c)-1/24/d/a/tanh(1/2*d*x+1/2*c)^3+3/8/d/a/tanh(1/2*d*
x+1/2*c)-1/d/a^2*b*ln(tanh(1/2*d*x+1/2*c))-4/3/d/a^2*b^2*sum(_R^2/(_R^5*a-2*_R^3*a-4*_R^2*b+_R*a)*ln(tanh(1/2*
d*x+1/2*c)-_R),_R=RootOf(_Z^6*a-3*_Z^4*a-8*_Z^3*b+3*_Z^2*a-a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{4 \,{\left (3 \, e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}}{3 \,{\left (a d e^{\left (6 \, d x + 6 \, c\right )} - 3 \, a d e^{\left (4 \, d x + 4 \, c\right )} + 3 \, a d e^{\left (2 \, d x + 2 \, c\right )} - a d\right )}} + \frac{b \log \left ({\left (e^{\left (d x + c\right )} + 1\right )} e^{\left (-c\right )}\right )}{a^{2} d} - \frac{b \log \left ({\left (e^{\left (d x + c\right )} - 1\right )} e^{\left (-c\right )}\right )}{a^{2} d} + 16 \, \int \frac{b^{2} e^{\left (5 \, d x + 5 \, c\right )} - 2 \, b^{2} e^{\left (3 \, d x + 3 \, c\right )} + b^{2} e^{\left (d x + c\right )}}{8 \,{\left (a^{2} b e^{\left (6 \, d x + 6 \, c\right )} - 3 \, a^{2} b e^{\left (4 \, d x + 4 \, c\right )} + 8 \, a^{3} e^{\left (3 \, d x + 3 \, c\right )} + 3 \, a^{2} b e^{\left (2 \, d x + 2 \, c\right )} - a^{2} b\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^4/(a+b*sinh(d*x+c)^3),x, algorithm="maxima")

[Out]

-4/3*(3*e^(2*d*x + 2*c) - 1)/(a*d*e^(6*d*x + 6*c) - 3*a*d*e^(4*d*x + 4*c) + 3*a*d*e^(2*d*x + 2*c) - a*d) + b*l
og((e^(d*x + c) + 1)*e^(-c))/(a^2*d) - b*log((e^(d*x + c) - 1)*e^(-c))/(a^2*d) + 16*integrate(1/8*(b^2*e^(5*d*
x + 5*c) - 2*b^2*e^(3*d*x + 3*c) + b^2*e^(d*x + c))/(a^2*b*e^(6*d*x + 6*c) - 3*a^2*b*e^(4*d*x + 4*c) + 8*a^3*e
^(3*d*x + 3*c) + 3*a^2*b*e^(2*d*x + 2*c) - a^2*b), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^4/(a+b*sinh(d*x+c)^3),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)**4/(a+b*sinh(d*x+c)**3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}\left (d x + c\right )^{4}}{b \sinh \left (d x + c\right )^{3} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^4/(a+b*sinh(d*x+c)^3),x, algorithm="giac")

[Out]

integrate(csch(d*x + c)^4/(b*sinh(d*x + c)^3 + a), x)